Skip to content

DBB

一、本文介绍

本文带来的改进机制是YOLOv8模型与多元分支模块 (Diverse Branch Block)的结合,Diverse Branch Block (DBB) 是一种用于增强卷积神经网络性能的结构重新参数化技术。这种技术的核心在于结合多样化的分支,这些分支具有不同的尺度和复杂度,从而丰富特征空间。我将其放在了YOLOv8的不同位置上均有一定的涨点幅度,同时这个DBB模块的参数量并不会上涨太多,我添加三个该机制到模型中,GFLOPs上涨了0.4。


二、Diverse Branch Block原理

论文地址:论文官方地址

代码地址:官方代码地址


2.1 Diverse Branch Block的基本原理

Diverse Branch Block(DBB)的基本原理是在训练阶段增加卷积层的复杂性,通过引入不同尺寸和结构的卷积分支来丰富网络的特征表示能力。我们可以将基本原理可以概括为以下几点:

1. 多样化分支结构:DBB 结合了不同尺度和复杂度的分支,如不同大小的卷积核和平均池化,以增加单个卷积的特征表达能力。
2. 训练与推理分离:在训练阶段,DBB 采用复杂的分支结构,而在推理阶段,这些分支可以被等效地转换为单个卷积层,以保持高效推理。
3. 宏观架构不变:DBB 允许在不改变整体网络架构的情况下,作为常规卷积层的替代品插入到现有网络中。

下面我将为大家展示Diverse Branch Block(DBB)的设计示例

在训练时(左侧),DBB由不同大小的卷积层和平均池化层组成,这些层以一种复杂的方式并行排列,并最终合并输出。训练完成后,这些复杂的结构会转换成单个卷积层,用于模型的推理阶段(右侧),以此保持推理时的效率。这种转换允许DBB在保持宏观架构不变的同时,增加训练时的微观结构复杂性。


2.2 多样化分支结构

多样化分支结构是在卷积神经网络中引入的一种结构,旨在通过多样化的分支来增强模型的特征提取能力。这些分支包含不同尺寸的卷积层和池化层,以及其他潜在的操作,它们并行工作以捕获不同的特征表示。在训练完成后,这些复杂的结构可以合并并简化为单个的卷积层,以便在推理时不增加额外的计算负担。这种设计使得DBB可以作为现有卷积层的直接替换,增强了现有网络架构的性能,而不需要修改整体架构

下面我详细展示了如何通过六种转换方法将训练时的Diverse Branch Block(DBB)转换为推理时的常规卷积层,每一种转换对应于一种特定的操作:

1. Transform I:将具有批量规范化(batch norm)的卷积层融合。
2. Transform II:合并具有相同配置的卷积层的输出。
3. Transform III:合并序列卷积层。
4. Transform IV:通过深度串联(concat)来合并卷积层。
5. Transform V:将平均池化(AVG)操作融入卷积操作中。
6. Transform VI:结合不同尺度的卷积层。

可以看到右侧的框显示了经过这些转换后,可以实现的推理时DBB,其中包含了常规卷积、平均池化和批量规范化操作。这些转换确保了在不增加推理时负担的同时,能够在训练时利用DBB的多样化特征提取能力。


2.3 训练与推理分离

训练与推理分离的概念是指在模型训练阶段使用复杂的DBB结构,而在模型推理阶段则转换为简化的卷积结构。这种设计允许模型在训练时利用DBB的多样性来增强特征提取和学习能力,而在实际应用中,即推理时,通过减少计算量来保持高效。这样,模型在保持高性能的同时,也保证了运行速度和资源效率。

上面我将展示在训练阶段如何通过不同的卷积组合(如图中的1x1和KxK卷积),以及在推理阶段如何将这些组合转换成一个简化的结构(如图中的转换IV所示的拼接操作):

经过分析,我们可以发现它说明了三种不同的情况

A)组卷积(Groupwise conv):将输入分成多个组,每个组使用不同的卷积核。
B)训练时的1x1-KxK结构:首先应用1x1的卷积(减少特征维度),然后是分组的KxK卷积。
C)从转换IV的角度看:这是将多个分组的卷积输出合并的视角。这里,组内卷积后的特征图先分别通过1x1卷积处理,然后再进行拼接(concat)。


2.4 宏观架构不变

宏观架构不变指的是DBB在设计时考虑到了与现有的网络架构兼容性,确保可以在不改变整体网络架构(如ResNet等流行架构)的前提下,将DBB作为一个模块嵌入。这意味着DBB增强了网络的特征提取能力,同时保持了原有网络结构的布局,确保了推理时的效率和性能。这样的设计允许研究者和开发者将DBB直接应用到现有的深度学习模型中,而无需进行大规模的架构调整。


三、Diverse Branch Block的核心代码

python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
 
 
__all__ = ['DiverseBranchBlock', 'C2f_DBB']
 
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p
 
 
class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))
 
def transI_fusebn(kernel, bn):
    gamma = bn.weight
    std = (bn.running_var + bn.eps).sqrt()
    return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std
 
 
def transII_addbranch(kernels, biases):
    return sum(kernels), sum(biases)
 
 
def transIII_1x1_kxk(k1, b1, k2, b2, groups):
    if groups == 1:
        k = F.conv2d(k2, k1.permute(1, 0, 2, 3))  #
        b_hat = (k2 * b1.reshape(1, -1, 1, 1)).sum((1, 2, 3))
    else:
        k_slices = []
        b_slices = []
        k1_T = k1.permute(1, 0, 2, 3)
        k1_group_width = k1.size(0) // groups
        k2_group_width = k2.size(0) // groups
        for g in range(groups):
            k1_T_slice = k1_T[:, g * k1_group_width:(g + 1) * k1_group_width, :, :]
            k2_slice = k2[g * k2_group_width:(g + 1) * k2_group_width, :, :, :]
            k_slices.append(F.conv2d(k2_slice, k1_T_slice))
            b_slices.append(
                (k2_slice * b1[g * k1_group_width:(g + 1) * k1_group_width].reshape(1, -1, 1, 1)).sum((1, 2, 3)))
        k, b_hat = transIV_depthconcat(k_slices, b_slices)
    return k, b_hat + b2
 
 
def transIV_depthconcat(kernels, biases):
    return torch.cat(kernels, dim=0), torch.cat(biases)
 
 
def transV_avg(channels, kernel_size, groups):
    input_dim = channels // groups
    k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
    k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
    return k
 
 
#   This has not been tested with non-square kernels (kernel.size(2) != kernel.size(3)) nor even-size kernels
def transVI_multiscale(kernel, target_kernel_size):
    H_pixels_to_pad = (target_kernel_size - kernel.size(2)) // 2
    W_pixels_to_pad = (target_kernel_size - kernel.size(3)) // 2
    return F.pad(kernel, [H_pixels_to_pad, H_pixels_to_pad, W_pixels_to_pad, W_pixels_to_pad])
 
 
def conv_bn(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,
            padding_mode='zeros'):
    conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                           stride=stride, padding=padding, dilation=dilation, groups=groups,
                           bias=False, padding_mode=padding_mode)
    bn_layer = nn.BatchNorm2d(num_features=out_channels, affine=True)
    se = nn.Sequential()
    se.add_module('conv', conv_layer)
    se.add_module('bn', bn_layer)
    return se
 
 
class IdentityBasedConv1x1(nn.Conv2d):
    def __init__(self, channels, groups=1):
        super(IdentityBasedConv1x1, self).__init__(in_channels=channels, out_channels=channels, kernel_size=1, stride=1,
                                                   padding=0, groups=groups, bias=False)
 
        assert channels % groups == 0
        input_dim = channels // groups
        id_value = np.zeros((channels, input_dim, 1, 1))
        for i in range(channels):
            id_value[i, i % input_dim, 0, 0] = 1
        self.id_tensor = torch.from_numpy(id_value).type_as(self.weight)
        nn.init.zeros_(self.weight)
 
    def forward(self, input):
        kernel = self.weight + self.id_tensor.to(self.weight.device).type_as(self.weight)
        result = F.conv2d(input, kernel, None, stride=1, padding=0, dilation=self.dilation, groups=self.groups)
        return result
 
    def get_actual_kernel(self):
        return self.weight + self.id_tensor.to(self.weight.device)
 
 
class BNAndPadLayer(nn.Module):
    def __init__(self,
                 pad_pixels,
                 num_features,
                 eps=1e-5,
                 momentum=0.1,
                 affine=True,
                 track_running_stats=True):
        super(BNAndPadLayer, self).__init__()
        self.bn = nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats)
        self.pad_pixels = pad_pixels
 
    def forward(self, input):
        output = self.bn(input)
        if self.pad_pixels > 0:
            if self.bn.affine:
                pad_values = self.bn.bias.detach() - self.bn.running_mean * self.bn.weight.detach() / torch.sqrt(
                    self.bn.running_var + self.bn.eps)
            else:
                pad_values = - self.bn.running_mean / torch.sqrt(self.bn.running_var + self.bn.eps)
            output = F.pad(output, [self.pad_pixels] * 4)
            pad_values = pad_values.view(1, -1, 1, 1)
            output[:, :, 0:self.pad_pixels, :] = pad_values
            output[:, :, -self.pad_pixels:, :] = pad_values
            output[:, :, :, 0:self.pad_pixels] = pad_values
            output[:, :, :, -self.pad_pixels:] = pad_values
        return output
 
    @property
    def weight(self):
        return self.bn.weight
 
    @property
    def bias(self):
        return self.bn.bias
 
    @property
    def running_mean(self):
        return self.bn.running_mean
 
    @property
    def running_var(self):
        return self.bn.running_var
 
    @property
    def eps(self):
        return self.bn.eps
 
 
class DiverseBranchBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=None, dilation=1, groups=1,
                 internal_channels_1x1_3x3=None,
                 deploy=False, single_init=False):
        super(DiverseBranchBlock, self).__init__()
        self.deploy = deploy
 
        self.nonlinear = Conv.default_act
 
        self.kernel_size = kernel_size
        self.out_channels = out_channels
        self.groups = groups
 
        if padding is None:
            padding = autopad(kernel_size, padding, dilation)
        assert padding == kernel_size // 2
 
        if deploy:
            self.dbb_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                         stride=stride,
                                         padding=padding, dilation=dilation, groups=groups, bias=True)
 
        else:
 
            self.dbb_origin = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                      stride=stride, padding=padding, dilation=dilation, groups=groups)
 
            self.dbb_avg = nn.Sequential()
            if groups < out_channels:
                self.dbb_avg.add_module('conv',
                                        nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
                                                  stride=1, padding=0, groups=groups, bias=False))
                self.dbb_avg.add_module('bn', BNAndPadLayer(pad_pixels=padding, num_features=out_channels))
                self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0))
                self.dbb_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
                                       padding=0, groups=groups)
            else:
                self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=padding))
 
            self.dbb_avg.add_module('avgbn', nn.BatchNorm2d(out_channels))
 
            if internal_channels_1x1_3x3 is None:
                internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels  # For mobilenet, it is better to have 2X internal channels
 
            self.dbb_1x1_kxk = nn.Sequential()
            if internal_channels_1x1_3x3 == in_channels:
                self.dbb_1x1_kxk.add_module('idconv1', IdentityBasedConv1x1(channels=in_channels, groups=groups))
            else:
                self.dbb_1x1_kxk.add_module('conv1',
                                            nn.Conv2d(in_channels=in_channels, out_channels=internal_channels_1x1_3x3,
                                                      kernel_size=1, stride=1, padding=0, groups=groups, bias=False))
            self.dbb_1x1_kxk.add_module('bn1', BNAndPadLayer(pad_pixels=padding, num_features=internal_channels_1x1_3x3,
                                                             affine=True))
            self.dbb_1x1_kxk.add_module('conv2',
                                        nn.Conv2d(in_channels=internal_channels_1x1_3x3, out_channels=out_channels,
                                                  kernel_size=kernel_size, stride=stride, padding=0, groups=groups,
                                                  bias=False))
            self.dbb_1x1_kxk.add_module('bn2', nn.BatchNorm2d(out_channels))
 
        #   The experiments reported in the paper used the default initialization of bn.weight (all as 1). But changing the initialization may be useful in some cases.
        if single_init:
            #   Initialize the bn.weight of dbb_origin as 1 and others as 0. This is not the default setting.
            self.single_init()
 
    def get_equivalent_kernel_bias(self):
        k_origin, b_origin = transI_fusebn(self.dbb_origin.conv.weight, self.dbb_origin.bn)
 
        if hasattr(self, 'dbb_1x1'):
            k_1x1, b_1x1 = transI_fusebn(self.dbb_1x1.conv.weight, self.dbb_1x1.bn)
            k_1x1 = transVI_multiscale(k_1x1, self.kernel_size)
        else:
            k_1x1, b_1x1 = 0, 0
 
        if hasattr(self.dbb_1x1_kxk, 'idconv1'):
            k_1x1_kxk_first = self.dbb_1x1_kxk.idconv1.get_actual_kernel()
        else:
            k_1x1_kxk_first = self.dbb_1x1_kxk.conv1.weight
        k_1x1_kxk_first, b_1x1_kxk_first = transI_fusebn(k_1x1_kxk_first, self.dbb_1x1_kxk.bn1)
        k_1x1_kxk_second, b_1x1_kxk_second = transI_fusebn(self.dbb_1x1_kxk.conv2.weight, self.dbb_1x1_kxk.bn2)
        k_1x1_kxk_merged, b_1x1_kxk_merged = transIII_1x1_kxk(k_1x1_kxk_first, b_1x1_kxk_first, k_1x1_kxk_second,
                                                              b_1x1_kxk_second, groups=self.groups)
 
        k_avg = transV_avg(self.out_channels, self.kernel_size, self.groups)
        k_1x1_avg_second, b_1x1_avg_second = transI_fusebn(k_avg.to(self.dbb_avg.avgbn.weight.device),
                                                           self.dbb_avg.avgbn)
        if hasattr(self.dbb_avg, 'conv'):
            k_1x1_avg_first, b_1x1_avg_first = transI_fusebn(self.dbb_avg.conv.weight, self.dbb_avg.bn)
            k_1x1_avg_merged, b_1x1_avg_merged = transIII_1x1_kxk(k_1x1_avg_first, b_1x1_avg_first, k_1x1_avg_second,
                                                                  b_1x1_avg_second, groups=self.groups)
        else:
            k_1x1_avg_merged, b_1x1_avg_merged = k_1x1_avg_second, b_1x1_avg_second
 
        return transII_addbranch((k_origin, k_1x1, k_1x1_kxk_merged, k_1x1_avg_merged),
                                 (b_origin, b_1x1, b_1x1_kxk_merged, b_1x1_avg_merged))
 
    def switch_to_deploy(self):
        if hasattr(self, 'dbb_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.dbb_reparam = nn.Conv2d(in_channels=self.dbb_origin.conv.in_channels,
                                     out_channels=self.dbb_origin.conv.out_channels,
                                     kernel_size=self.dbb_origin.conv.kernel_size, stride=self.dbb_origin.conv.stride,
                                     padding=self.dbb_origin.conv.padding, dilation=self.dbb_origin.conv.dilation,
                                     groups=self.dbb_origin.conv.groups, bias=True)
        self.dbb_reparam.weight.data = kernel
        self.dbb_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('dbb_origin')
        self.__delattr__('dbb_avg')
        if hasattr(self, 'dbb_1x1'):
            self.__delattr__('dbb_1x1')
        self.__delattr__('dbb_1x1_kxk')
 
    def forward(self, inputs):
        if hasattr(self, 'dbb_reparam'):
            return self.nonlinear(self.dbb_reparam(inputs))
 
        out = self.dbb_origin(inputs)
        if hasattr(self, 'dbb_1x1'):
            out += self.dbb_1x1(inputs)
        out += self.dbb_avg(inputs)
        out += self.dbb_1x1_kxk(inputs)
        return self.nonlinear(out)
 
    def init_gamma(self, gamma_value):
        if hasattr(self, "dbb_origin"):
            torch.nn.init.constant_(self.dbb_origin.bn.weight, gamma_value)
        if hasattr(self, "dbb_1x1"):
            torch.nn.init.constant_(self.dbb_1x1.bn.weight, gamma_value)
        if hasattr(self, "dbb_avg"):
            torch.nn.init.constant_(self.dbb_avg.avgbn.weight, gamma_value)
        if hasattr(self, "dbb_1x1_kxk"):
            torch.nn.init.constant_(self.dbb_1x1_kxk.bn2.weight, gamma_value)
 
    def single_init(self):
        self.init_gamma(0.0)
        if hasattr(self, "dbb_origin"):
            torch.nn.init.constant_(self.dbb_origin.bn.weight, 1.0)
 
 
class Bottleneck_DBB(nn.Module):
    """Standard bottleneck."""
 
    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = DiverseBranchBlock(c_, c2, k[1], 1, g)
        self.add = shortcut and c1 == c2
 
    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
 
 
class C2f_DBB(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""
 
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck_DBB(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))
 
    def forward(self, x):
        """Forward pass through C2f layer."""
        x = self.cv1(x)
        x = x.chunk(2, 1)
        y = list(x)
        # y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))
 
    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

四、手把手教你添加Diverse Branch Block机制

4.1 Diverse Branch Block的添加教程

这个添加方式和之前的变了一下,以后的添加方法都按照这个来了,是为了和群内的文件适配。


4.1.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.1.2 修改二

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.1.3 修改三

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.1.4 修改四

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。


4.2 Diverse Branch Block的yaml文件和训练截图

下面推荐几个版本的yaml文件给大家,大家可以复制进行训练,但是组合用很多具体那种最有效果都不一定,针对不同的数据集效果也不一样,我不可每一种都做实验,所以我下面推荐了三种我自己认为可能有效果的配合方式,你也可以自己进行组合。


4.2.1 Diverse Branch Block的yaml版本一(推荐)

下面的配置文件为我修改的C2f-DBB****的位置(我的对比实验是用这个版本跑出来的)。

python
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_DBB, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_DBB, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_DBB, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.2.2 Diverse Branch Block的yaml版本二

添加的版本二具体那种适合你需要大家自己多做实验来尝试。

python
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_DBB, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, DiverseBranchBlock, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_DBB, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, DiverseBranchBlock, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_DBB, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.2.3Diverse Branch Block的yaml版本三

python
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, DiverseBranchBlock, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, DiverseBranchBlock, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, DiverseBranchBlock, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, DiverseBranchBlock, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.2.2 Diverse Branch Block的训练过程截图

下面是添加了Diverse Branch Block的训练截图。

​​​​​​


五、Diverse Branch Block可添加的位置

5.1 推荐Diverse Branch Block可添加的位置

Diverse Branch Block是一种即插即用的可替换卷积的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入Diverse Branch Block(yaml文件一)。

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C2f_DBB可以帮助模型更有效地融合不同层次的特征(yaml文件二

  3. Backbone:可以替换中干网络中的卷积部分(yaml文件三)。

Released under the MIT License.