Skip to content

ACmix自注意力机制

一、本文介绍

本文给大家带来的改进机制是ACmix自注意力机制的改进版本,它的核心思想是,传统卷积操作和自注意力模块的大部分计算都可以通过1x1的卷积来实现。ACmix首先使用1x1卷积对输入特征图进行投影,生成一组中间特征,然后根据不同的范式,即自注意力和卷积方式,分别重用和聚合这些中间特征。这样,ACmix既能利用自注意力的全局感知能力,又能通过卷积捕获局部特征,从而在保持较低计算成本的同时,提高模型的性能。

二、ACmix的框架原理

官方论文地址:官方论文地址

官方代码地址:官方代码地址

2.1 ACMix的基本原理

ACmix是一种混合模型,结合了自注意力机制和卷积运算的优势。它的核心思想是,传统卷积操作和自注意力模块的大部分计算都可以通过1x1的卷积来实现。ACmix首先使用1x1卷积对输入特征图进行投影,生成一组中间特征,然后根据不同的范式,即自注意力和卷积方式,分别重用和聚合这些中间特征。这样,ACmix既能利用自注意力的全局感知能力,又能通过卷积捕获局部特征,从而在保持较低计算成本的同时,提高模型的性能。

ACmix模型的主要改进机制可以分为以下两点:

1. 自注意力和卷积的整合:将自注意力和卷积技术融合,实现两者优势的结合。 2. 运算分解与重构:通过分解自注意力和卷积中的运算,重构为1×1卷积形式,提高了运算效率。

2.1.1 自注意力和卷积的整合

文章中指出,自注意力和卷积的整合通过以下方式实现:

特征分解:自注意力机制的查询(query)、键(key)、值(value)与卷积操作通过1x1卷积进行特征分解。 运算共享:卷积和自注意力共享相同的1x1卷积运算,减少了重复的计算量。 特征融合:在ACmix模型中,卷积和自注意力生成的特征通过求和操作进行融合,加强了模型的特征提取能力。 模块化设计:通过模块化设计,ACmix可以灵活地嵌入到不同的网络结构中,增强网络的表征能力。

这张图片展示了ACmix中的主要概念,它比较了卷积、自注意力和ACmix各自的结构和计算复杂度。图中:

(a) 卷积:展示了标准卷积操作,包含一个K2的1x1卷积,表示卷积核大小和卷积操作的聚合。

(b) 自注意力:展示了自注意力机制,它包含三个头部的1x1卷积,代表多头注意力机制中每个头部的线性变换,以及自注意力聚合。

(c) ACmix(我们的方法):结合了卷积和自注意力聚合,其中1x1卷积在两者之间共享,旨在减少计算开销并整合轻量级的聚合操作。

整体上,ACmix旨在通过共享计算资源(1x1卷积)并结合两种不同的聚合操作,以优化特征通道上的计算复杂度。

2.1.2 运算分解与重构

在ACmix中,运算分解与重构的概念是指将传统的卷积运算和自注意力运算拆分,并重新构建为更高效的形式。这主要通过以下步骤实现:

分解卷积和自注意力:将标准的卷积核分解成多个1×1卷积核,每个核处理不同的特征子集,同时将自注意力机制中的查询(query)、键(key)和值(value)的生成也转换为1×1卷积操作。 重构为混合模块:将分解后的卷积和自注意力运算重构成一个统一的混合模块,既包含了卷积的空间特征提取能力,也融入了自注意力的全局信息聚合功能。 提高运算效率:这种分解与重构的方法减少了冗余计算,提高了运算效率,同时降低了模型的复杂度。

这张图片展示了ACmix提出的混合模块的结构。图示包含了:

(a) 卷积:3x3卷积通过1x1卷积的方式被分解,展示了特征图的转换过程。

(b)自注意力:输入特征先转换成查询(query)、键(key)和值(value),使用1x1卷积实现,并通过相似度匹配计算注意力权重。

(c) ACmix:结合了(a)和(b)的特点,在第一阶段使用三个1x1卷积对输入特征图进行投影,在第二阶段将两种路径得到的特征相加,作为最终输出。

右图显示了ACmix模块的流程,强调了两种机制的融合并提供了每个操作块的计算复杂度。

三、ACmix的核心代码

该代码本身存在一个bug,会导致验证的适合报类型不匹配的错误,我将其进行了解决,这也是一个读者和我说的想要帮忙解决一下这个问题困扰了他很久。

python
import torch
import torch.nn as nn
 
def position(H, W, type, is_cuda=True):
    if is_cuda:
        loc_w = torch.linspace(-1.0, 1.0, W).cuda().unsqueeze(0).repeat(H, 1).to(type)
        loc_h = torch.linspace(-1.0, 1.0, H).cuda().unsqueeze(1).repeat(1, W).to(type)
    else:
        loc_w = torch.linspace(-1.0, 1.0, W).unsqueeze(0).repeat(H, 1)
        loc_h = torch.linspace(-1.0, 1.0, H).unsqueeze(1).repeat(1, W)
    loc = torch.cat([loc_w.unsqueeze(0), loc_h.unsqueeze(0)], 0).unsqueeze(0)
    return loc
 
 
def stride(x, stride):
    b, c, h, w = x.shape
    return x[:, :, ::stride, ::stride]
 
 
def init_rate_half(tensor):
    if tensor is not None:
        tensor.data.fill_(0.5)
 
 
def init_rate_0(tensor):
    if tensor is not None:
        tensor.data.fill_(0.)
 
 
class ACmix(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1):
        super(ACmix, self).__init__()
        self.in_planes = in_planes
        self.out_planes = out_planes
        self.head = head
        self.kernel_att = kernel_att
        self.kernel_conv = kernel_conv
        self.stride = stride
        self.dilation = dilation
        self.rate1 = torch.nn.Parameter(torch.Tensor(1))
        self.rate2 = torch.nn.Parameter(torch.Tensor(1))
        self.head_dim = self.out_planes // self.head
 
        self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
        self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
        self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
        self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)
 
        self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2
        self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)
        self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)
        self.softmax = torch.nn.Softmax(dim=1)
 
        self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)
        self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,
                                  kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,
                                  stride=stride)
 
        self.reset_parameters()
 
    def reset_parameters(self):
        init_rate_half(self.rate1)
        init_rate_half(self.rate2)
        kernel = torch.zeros(self.kernel_conv * self.kernel_conv, self.kernel_conv, self.kernel_conv)
        for i in range(self.kernel_conv * self.kernel_conv):
            kernel[i, i // self.kernel_conv, i % self.kernel_conv] = 1.
        kernel = kernel.squeeze(0).repeat(self.out_planes, 1, 1, 1)
        self.dep_conv.weight = nn.Parameter(data=kernel, requires_grad=True)
        self.dep_conv.bias = init_rate_0(self.dep_conv.bias)
 
    def forward(self, x):
        q, k, v = self.conv1(x), self.conv2(x), self.conv3(x)
        scaling = float(self.head_dim) ** -0.5
        b, c, h, w = q.shape
        h_out, w_out = h // self.stride, w // self.stride
 
        # ### att
        # ## positional encoding
        pe = self.conv_p(position(h, w, x.dtype, x.is_cuda))
 
        q_att = q.view(b * self.head, self.head_dim, h, w) * scaling
        k_att = k.view(b * self.head, self.head_dim, h, w)
        v_att = v.view(b * self.head, self.head_dim, h, w)
 
        if self.stride > 1:
            q_att = stride(q_att, self.stride)
            q_pe = stride(pe, self.stride)
        else:
            q_pe = pe
 
        unfold_k = self.unfold(self.pad_att(k_att)).view(b * self.head, self.head_dim,
                                                         self.kernel_att * self.kernel_att, h_out,
                                                         w_out)  # b*head, head_dim, k_att^2, h_out, w_out
        unfold_rpe = self.unfold(self.pad_att(pe)).view(1, self.head_dim, self.kernel_att * self.kernel_att, h_out,
                                                        w_out)  # 1, head_dim, k_att^2, h_out, w_out
 
        att = (q_att.unsqueeze(2) * (unfold_k + q_pe.unsqueeze(2) - unfold_rpe)).sum(
            1)  # (b*head, head_dim, 1, h_out, w_out) * (b*head, head_dim, k_att^2, h_out, w_out) -> (b*head, k_att^2, h_out, w_out)
        att = self.softmax(att)
 
        out_att = self.unfold(self.pad_att(v_att)).view(b * self.head, self.head_dim, self.kernel_att * self.kernel_att,
                                                        h_out, w_out)
        out_att = (att.unsqueeze(1) * out_att).sum(2).view(b, self.out_planes, h_out, w_out)
 
        ## conv
        f_all = self.fc(torch.cat(
            [q.view(b, self.head, self.head_dim, h * w), k.view(b, self.head, self.head_dim, h * w),
             v.view(b, self.head, self.head_dim, h * w)], 1))
        f_conv = f_all.permute(0, 2, 1, 3).reshape(x.shape[0], -1, x.shape[-2], x.shape[-1])
 
        out_conv = self.dep_conv(f_conv)
 
        return self.rate1 * out_att + self.rate2 * out_conv
 
 
if __name__ == "__main__":
 
    # Generating Sample image
    image_size = (1, 24, 224, 224)
    image = torch.rand(*image_size)
 
    # Model
    mobilenet_v1 = ACmix(24, 24)
 
    out = mobilenet_v1(image)
    print(out)

四、手把手教你添加ACmix

4.1 ACmix添加步骤

4.1.1 步骤一

首先我们找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个py文件,名字可以根据你自己的习惯起,然后将ACmix的核心代码复制进去。

4.1.2 步骤二

之后我们找到'ultralytics/nn/tasks.py'文件,在其中注册我们的ACmix模块。

首先我们需要在文件的开头导入我们的ACmix模块,如下图所示->

​​

4.1.3 步骤三

我们找到parse_model这个方法,可以用搜索也可以自己手动找,大概在六百多行吧。 我们找到如下的地方,然后将ACmix添加进去即可,模仿我添加即可。

​​

python
        elif m in {ACmix}:
            args = [ch[f],  ch[f]]

TIP

到此我们就注册成功了,可以修改yaml文件中输入ACmix使用这个模块了。

五、ACmix的yaml文件和运行记录

下面推荐几个版本的yaml文件给大家,大家可以复制进行训练,但是组合用很多具体那种最有效果都不一定,针对不同的数据集效果也不一样,我不可每一种都做实验,所以我下面推荐了几种我自己认为可能有效果的配合方式,你也可以自己进行组合。


5.1 ACMix的yaml版本一(推荐)

下面的添加ACMix是我实验结果的版本,我仅在大目标检测层的输出添加了一个ACMix模块,就涨点了0.05左右,所以大家可以在中等和小目标检测层都添加ACMix模块进行尝试,下面的yaml文件我会给大家推荐。

python
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  - [-1, 1, ACmix, []]  # 16
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)
  - [-1, 1, ACmix, []]  # 20
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 23 (P5/32-large)
  - [-1, 1, ACmix, []]  # 24
 
  - [[16, 20, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)

5.2 ACMix的yaml版本二

添加的版本二具体那种适合你需要大家自己多做实验来尝试。

python
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
  - [-1, 1, ACmix, []]  # 22
 
  - [[15, 18, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

5.3 推荐ACMix可添加的位置

ACMix是一种即插即用的可替换卷积的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入ACMix。

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加ACMix可以帮助模型更有效地融合不同层次的特征(yaml文件一和二)。

  3. Backbone:可以替换中干网络中的卷积部分


5.4 ACMix的训练过程截图

下面是添加了ACMix的训练截图:

​​

Released under the MIT License.