1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
| class FCN_VGG16(nn.Module): ''' FCN 的 backbone,由 VGG16 修改而来,舍弃最后的全连接层 以池化层为区分,一个池化层到上一个池化层之间的部分认为一个卷积块。 ''' def __init__(self): super(FCN_VGG16, self).__init__() self.features = nn.Sequential( # 第一个卷积块: 输入通道数:3,输出通道数:64,卷积核大小:3*3,步长:1,填充:1 nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), # 第二个卷积块 nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), # 第三个卷积块 nn.Conv2d(in_channels=128, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), # 第四个卷积块 nn.Conv2d(in_channels=256, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.Conv2d(in_channels=512,out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), # 第五个卷积块 nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False), )
# 每一层在 features 中的范围,{0,1,2,3,4} 为第一个卷积块,{5,6,7,8,9} 为第二个卷积块... self.range = ((0, 5), (5, 10), (10, 17), (17, 24), (24, 31))
def forward(self, input): output = {} # 每一块的输出 for idx, (start, end) in enumerate(self.range): for layer in range(start, end): input = self.features[layer](input) output["x%d" % (idx + 1)] = input return output
|