1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
| import os import shutil import json import nibabel as nib import numpy as np from collections import OrderedDict
def convert_brats2024_to_nnunet(brats_root, nnunet_raw_data_base): """ 将BraTS2024数据集转换为nnUNet格式,保持原始标签不变 包含新的切除腔(RC)标签 Args: brats_root: BraTS2024原始数据根目录路径 nnunet_raw_data_base: nnUNet原始数据基础目录路径 """ errors = [] task_name = "Task001_BraTS2024" task_folder = os.path.join(nnunet_raw_data_base, "nnUNet_raw", task_name) imagesTr_folder = os.path.join(task_folder, "imagesTr") imagesTs_folder = os.path.join(task_folder, "imagesTs") labelsTr_folder = os.path.join(task_folder, "labelsTr") labelsTs_folder = os.path.join(task_folder, "labelsTs") for folder in [imagesTr_folder, imagesTs_folder, labelsTr_folder, labelsTs_folder]: os.makedirs(folder, exist_ok=True) all_cases = [] for item in os.listdir(brats_root): case_path = os.path.join(brats_root, item) if os.path.isdir(case_path) and item.startswith('BraTS-'): all_cases.append(item) all_cases.sort() print(f"找到 {len(all_cases)} 个病例") modality_mapping = { 't1n': '0000', 't1c': '0001', 't2f': '0002', 't2w': '0003' } def safe_copy_image(src_path, dst_path, case_name, modality): """ 安全地复制图像文件,处理可能的错误 """ try: if not src_path.endswith('.gz'): img = nib.load(src_path) nib.save(img, dst_path) else: shutil.copy2(src_path, dst_path) return True except Exception as e: error_msg = f"复制图像失败 - 病例: {case_name}, 模态: {modality}, 文件: {src_path}, 错误: {str(e)}" print(f"错误: {error_msg}") errors.append(error_msg) return False def safe_copy_label(src_path, dst_path, case_name): """ 安全地复制标签文件,处理可能的错误 检查并记录BraTS2024的标签值分布 """ try: label_nii = nib.load(src_path) label_data = label_nii.get_fdata().astype(np.uint8) unique_labels = np.unique(label_data) print(f"处理 {os.path.basename(src_path)},标签值: {unique_labels}") valid_labels = {0, 1, 2, 3, 4} unexpected_labels = set(unique_labels) - valid_labels if unexpected_labels: warning_msg = f"发现意外标签值 - 病例: {case_name}, 标签值: {unexpected_labels}" print(f"警告: {warning_msg}") errors.append(warning_msg) label_counts = {} for label in unique_labels: count = np.sum(label_data == label) label_counts[int(label)] = count print(f" 标签分布: {label_counts}") if not src_path.endswith('.gz'): nib.save(label_nii, dst_path) else: shutil.copy2(src_path, dst_path) return True except Exception as e: error_msg = f"复制标签失败 - 病例: {case_name}, 文件: {src_path}, 错误: {str(e)}" print(f"错误: {error_msg}") errors.append(error_msg) return False def check_file_validity(file_path): """ 检查文件是否有效(非空且可读取) """ try: if not os.path.exists(file_path): return False, "文件不存在" if os.path.getsize(file_path) == 0: return False, "文件为空" nib.load(file_path) return True, "文件有效" except Exception as e: return False, f"文件无效: {str(e)}" training_cases = [] test_cases = [] skipped_cases = [] for i, case_name in enumerate(all_cases): case_folder = os.path.join(brats_root, case_name) if not os.path.exists(case_folder): error_msg = f"病例文件夹不存在: {case_folder}" print(f"警告: {error_msg}") errors.append(error_msg) skipped_cases.append(case_name) continue base_name = case_name required_files = { 't1n': f"{base_name}-t1n.nii", 't1c': f"{base_name}-t1c.nii", 't2f': f"{base_name}-t2f.nii", 't2w': f"{base_name}-t2w.nii", 'seg': f"{base_name}-seg.nii" } files_exist = True invalid_files = [] for key, filename in required_files.items(): file_path = os.path.join(case_folder, filename) gz_file_path = file_path + ".gz" if os.path.exists(file_path): is_valid, msg = check_file_validity(file_path) if not is_valid: invalid_files.append(f"{filename}: {msg}") files_exist = False elif os.path.exists(gz_file_path): required_files[key] = filename + ".gz" is_valid, msg = check_file_validity(gz_file_path) if not is_valid: invalid_files.append(f"{filename}.gz: {msg}") files_exist = False else: error_msg = f"文件缺失 - 病例: {case_name}, 文件: {filename} 或 {filename}.gz" print(f"警告: {error_msg}") errors.append(error_msg) files_exist = False if invalid_files: for invalid_file in invalid_files: error_msg = f"文件无效 - 病例: {case_name}, {invalid_file}" print(f"警告: {error_msg}") errors.append(error_msg) if not files_exist: skipped_cases.append(case_name) continue case_success = True if i < len(all_cases) * 0.8: print(f"处理训练病例: {case_name}") for modality, suffix in modality_mapping.items(): src_file = os.path.join(case_folder, required_files[modality]) dst_file = os.path.join(imagesTr_folder, f"{case_name}_{suffix}.nii.gz") if not safe_copy_image(src_file, dst_file, case_name, modality): case_success = False src_seg = os.path.join(case_folder, required_files['seg']) dst_seg = os.path.join(labelsTr_folder, f"{case_name}.nii.gz") if not safe_copy_label(src_seg, dst_seg, case_name): case_success = False if case_success: training_cases.append(case_name) print(f"训练病例 {case_name} 处理成功") else: skipped_cases.append(case_name) print(f"训练病例 {case_name} 处理失败,已跳过") else: print(f"处理测试病例: {case_name}") for modality, suffix in modality_mapping.items(): src_file = os.path.join(case_folder, required_files[modality]) dst_file = os.path.join(imagesTs_folder, f"{case_name}_{suffix}.nii.gz") if not safe_copy_image(src_file, dst_file, case_name, modality): case_success = False src_seg = os.path.join(case_folder, required_files['seg']) dst_seg = os.path.join(labelsTs_folder, f"{case_name}.nii.gz") if not safe_copy_label(src_seg, dst_seg, case_name): case_success = False if case_success: test_cases.append(case_name) print(f"测试病例 {case_name} 处理成功") else: skipped_cases.append(case_name) print(f"测试病例 {case_name} 处理失败,已跳过") print(f"处理完成: {len(training_cases)} 个训练病例, {len(test_cases)} 个测试病例") print(f"跳过的病例数量: {len(skipped_cases)}") error_file_path = os.path.join(os.path.dirname(__file__), "error.txt") with open(error_file_path, 'w', encoding='utf-8') as f: f.write(f"BraTS2024数据转换错误报告\n") f.write(f"生成时间: {str(os.path.getctime(error_file_path)) if os.path.exists(error_file_path) else 'N/A'}\n") f.write(f"="*80 + "\n\n") f.write(f"总计处理: {len(all_cases)} 个病例\n") f.write(f"成功处理: {len(training_cases) + len(test_cases)} 个病例\n") f.write(f"跳过病例: {len(skipped_cases)} 个病例\n") f.write(f"错误数量: {len(errors)} 个错误\n\n") if skipped_cases: f.write("跳过的病例列表:\n") for case in skipped_cases: f.write(f" - {case}\n") f.write("\n") if errors: f.write("详细错误信息:\n") for i, error in enumerate(errors, 1): f.write(f"{i}. {error}\n") else: f.write("没有发现错误。\n") print(f"错误日志已保存到: {error_file_path}") if len(training_cases) + len(test_cases) > 0: dataset_json = OrderedDict() dataset_json['name'] = "BraTS2024" dataset_json['description'] = "Brain Tumor Segmentation Challenge 2024" dataset_json['tensorImageSize'] = "4D" dataset_json['reference'] = "https://www.synapse.org/#!Synapse:syn53708249" dataset_json['licence'] = "see BraTS2024 website" dataset_json['release'] = "1.0" dataset_json['modality'] = { "0": "T1n", "1": "T1c", "2": "T2f", "3": "T2w" } dataset_json['labels'] = { "0": "background", "1": "NETC (Non-Enhancing Tumor Core)", "2": "SNFH (Surrounding Non-enhancing FLAIR Hyperintensity)", "3": "ET (Enhancing Tumor)", "4": "RC (Resection Cavity)" } dataset_json['numTraining'] = len(training_cases) dataset_json['numTest'] = len(test_cases) dataset_json['training'] = [] for case in training_cases: case_dict = { "image": f"./imagesTr/{case}.nii.gz", "label": f"./labelsTr/{case}.nii.gz" } dataset_json['training'].append(case_dict) dataset_json['test'] = [] for case in test_cases: dataset_json['test'].append(f"./imagesTs/{case}.nii.gz") json_file_path = os.path.join(task_folder, "dataset.json") with open(json_file_path, 'w') as f: json.dump(dataset_json, f, indent=4) print(f"dataset.json 已保存到: {json_file_path}") print("BraTS2024数据转换完成!标签保持原始值不变:") print(" 0 - background (背景)") print(" 1 - NETC (Non-Enhancing Tumor Core) - 非增强肿瘤核心") print(" 2 - SNFH (Surrounding Non-enhancing FLAIR Hyperintensity) - 周围非增强FLAIR高信号") print(" 3 - ET (Enhancing Tumor) - 增强肿瘤") print(" 4 - RC (Resection Cavity) - 切除腔") return task_folder else: print("警告: 没有成功处理任何病例,未生成dataset.json文件") return None
if __name__ == "__main__": brats_root = "BraTS2024" nnunet_raw_data_base = "DATASET" try: result = convert_brats2024_to_nnunet(brats_root, nnunet_raw_data_base) if result: print(f"\n转换成功完成!输出目录: {result}") print("可以继续进行nnUNet的预处理和训练步骤。") print("\n注意:BraTS2024引入了新的切除腔(RC)标签(标签值4),") print("这是与之前BraTS版本的主要区别。") else: print("\n转换失败,请查看错误日志了解详细信息。") except Exception as e: print(f"程序执行失败: {str(e)}") error_file_path = os.path.join(os.path.dirname(__file__), "error.txt") with open(error_file_path, 'w', encoding='utf-8') as f: f.write(f"程序执行失败: {str(e)}\n") print(f"错误已记录到: {error_file_path}")
|